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The Bashkir uplift (BU) representing a large inlier
of Precambrian (mostly Riphean–Vendian) rocks,
which are unconformably overlain by Paleozoic
sequences [3, Fig. 1], is located in the western South�
ern Urals. In terms of the structure, it consists of two
stages separated by a distinct structural unconformity.
The lower stage is formed by an Archean–Paleoprot�
erozoic Taratash metamorphic complex, which con�
stitutes the crystalline basement of the East European
Platform (EEP) [7]. The upper stage is composed of a
Riphean–Paleozoic complex represented mostly by

sedimentary deposits, which accumulated in the East
Bashkir basin (EBB). The lower part of its strati�
graphic succession is known as representing the Riph�
ean stratotype, the integral thickness of which
amounts, according to some estimates [7, 14, etc.], to
10 km. Higher in the section, these rocks are overlain
with disconformity by a sequence of clastic and clayey
rock varieties up to 1.5 km thick united into the
Upper Vendian Asha Group [7, etc.], although it is
most likely Late Vendian–Early Cambrian in age [2].
In the southern part of the Bashkir uplift, rocks of the
Asha Group are overlain with disconformity by Upper
Ordovician terrigenous–carbonate rocks, which, in
turn, give way first to Silurian–Lower Devonian car�
bonates and then to uppermost Lower Devonian sand�
stones (Emsian Takaty Formation) [1]. In the western
part of the Bashkir uplift, the Takaty Formation rests
with disconformity upon the Upper Vendian–Lower
Cambrian Asha Group and is conformably overlain by
a Middle Devonian–Lower Permian terrigenous–car�
bonate sequence. Thus, the Riphean–Paleozoic sec�
tion of the East Bashkir basin is lacking structural
unconformities and its constituting sedimentary suc�
cessions are separated only by disconformities.

In the Riphean–Paleozoic section spanning an
interval of approximately 1.5 Ga long, a substantial
role belongs to sandstones (Fig. 1). The U–Pb dating
of detrital zircons from heterogeneous sandstones of
the East Bashkir basin makes it possible to elucidate
some important aspects in the formation of sedimen�
tary successions in the Southern Ural margin of the
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Fig. 1. Stratigraphy of Bashkir uplift deposits (compiled using materials from [7, 14], data by B.M. Keller, M.A. Semikhatov,
V.I. Kozlov, and original observations). The stratigraphic positions of samples with detrital zircons dated by the U–Pb method:
(M08�16�1) Ai Formation [4, 10], (K12�057) Lemeza Subformation [7–9], (K09�027) Basu Formation [3], (K09�041) Kuk�
karauk Formation [3], (K12�025) Upper Ordovician (this work), (K09�025) Takaty Formation [5]. The gray color designates the
interval characterized by the “non�Baltic” age spectra of detrital zircons. 
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East European Platform. Previously, detrital zircons
were investigated from five levels in the Riphean–
Paleozoic section of the East Bashkir basin (Figs. 1,
2A, 2C–2F): Lower Riphean, Upper Riphean, Upper
Vendian, Lower Cambrian, uppermost Lower Devo�
nian [3–5, 8–10]. In this communication, we present
the first results of U–Pb dating of zircons from Upper
Ordovician sandstones (Fig. 2B) accompanied by
comparative analysis of the U–Pb ages obtained pre�
viously for zircons from sandstones of different strati�
graphic levels in the East Bashkir basin section.

The Upper Ordovician section investigated is
located in the southern part of the Bashkir uplift,
where it is exposed on the right side of the Belaya River

west of the village of Maksyutovo. In this area, the
rocks of the Asha Group are overlain with disconfor�
mity by a thin member of small–pebble quartzose
conglomerates, which is replaced higher in the section
by a member of cross�bedded dolomitic sandstones
with lenses of sandy dolomites 18 m thick. The mem�
ber contains poorly preserved casts of brachiopods
Dalmanella sp., Camarotoenhia sp., Strophomena sp.,
Orthidae, and Didymelasma sp., which were found
11–12 m below the contact with Silurian dolomites
and indicate the Middle–Late Ordovician age of
sandstones [1].

Sample K12�025 (53°0'29.30'' N, 56°56'36.40'' E)
was taken from medium�grained cross�bedded sub�
stantially quartzose dolomitic sandstones. It yielded
208 zircon grains, 15% of which are fissured and many
contain alien inclusions. The U–Th–Pb isotopic sys�
tem was investigated in the GEMOC Center (Mac�
quarie University, Sidney, Australia). In total, 60 grains
were dated, of which 45 dates (75%) are concordant
(|D| ≤ 10%); other dates were excluded from the anal�
ysis. The technical details of the equipment, dating
technique, and constants used for processing of the
analytical data are available in [13]. The concordant
ages of zircons range from 554 ± 9 to 2806 ± 33 Ma
being distributed among the main Precambrian units
in the following manner: Neoproterozoic (5 grains),
Mesoproterozoic (23 grains or >50%), Paleoprotero�
zoic (14 grains), and Archean (3 grains). The curve of
the probability density function exhibits three distinct
maximums at 1210, 1506, and 1969 Ma (Fig. 3);
other peaks are secondary, formed by a single or two
age values.

The comparative analysis of all the available dates,
which characterize the long (approximately 1.5 Ga)
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depositional history of sedimentary sequences in the
East Bashkir basin, makes it possible to define a pecu�
liar Late Vendian–Ordovician stage in its evolution.
From the remaining Riphean–Paleozoic sedimenta�
tion history, this stage is separated by two significant
reorganizations of paleogeographic and/or paleotec�
tonic settings in the East Bashkir basin proper and/or
adjacent structures with substantial changes in the
sources of clastic material.

The Riphean (approximately 1.75–0.67 Ga) stage
in the formation of sedimentary succession of the East
Bashkir basin is insufficiently characterized by the
data on the U–Pb ages of detrital zircons [4, 8–10].
The available data combined with the results of litho�
logical–geochemical investigations allow the assump�
tion that clastic material was transported to the basin
mostly from the East European Platform [6], i.e., from
“Baltic” sources. Moreover, paleodrainage areas dur�
ing this extremely long period could naturally change
their positions, sizes, and configurations [9, 10].

The results of the study of zircons from sandstones
of the Asha Group provide grounds for assuming that
in the late Vendian, the East Bashkir basin started
receiving clastic material with Mesoproterozoic and
Early Neoproterozoic zircons [3]. Rock complexes
with such ages are now known only from the north�
western part of the East European Platform, which is
located over 2000 km away from the basin [12]. There�
fore, there are no grounds to consider them as the
main/dominant source of clastics for sandstones of the
Asha Group. In this connection, it was suggested that
a new “non�Baltic” source of clastic material located
east (in recent coordinates) of the Bashkir uplift
appeared at the end of the Vendian [3].

The dating of zircons from sandstones of the Takaty
Formation revealed that the next cardinal transforma�
tion of the source of clastic material took place by the
end of the Early Devonian: only rock complexes with
zircons older than 1.87 Ga were subjected to erosion at
that time [5]. This gives reason to conclude that the

Volga–Uralia block was the only likely provenance for
the East Bashkir basin in the Early Devonian. The
similarity between ages of zircons from Lower Devo�
nian and Upper Riphean clastic rocks (table, KS coef�
ficient 0.387) indicates the substantial contribution of
material from two sources to their composition:
eroded from the crystalline basement of the East
European Platform and reworked from Riphean
deposits.

The characteristic feature of this stage, which
started in the Late Vendian and terminated by the
Emsian time, is the remarkable similarity between age
spectra obtained for zircons from sandstones of the
Asha Group and the Upper Ordovician section. The
age spectra of zircons from the Basu and Kukkarauk
formations of the Asha Group demonstrate a high
degree of similarity between each other (KS coeffi�
cient 0.386) and an extremely high similarity also with
the age spectrum of zircons from the Upper Ordovi�
cian part of the section (KS coefficients 0.996 and
0.894, respectively). The comparison between curves
of the probability density function of the distribution
of ages obtained for zircons from the Upper Ordovi�
cian sandstone and integral age spectrum for zircons
from the Asha Group reveals the almost complete
identity of peaks for the Mesoproterozoic–Paleoprot�
erozoic interval (Fig 3). Notable differences are regis�
tered only in the spectrum portion with ages younger
than 1 Ga. Such a high degree of similarity between
age spectra is unusual, if it is taken into consideration
that depositional environments in the East Bashkir
basin during the Late Vendian–Ordovician were
highly variable.

The geological data for revealing directions of sedi�
ment fluxes and paleogeographic settings in the Ven�
dian are insufficient. At the same time, the immaturity
of lithic arkosic and, locally, polymictic and graywacke
Asha sandstone indicates a close provenance with
exposed diverse igneous rocks including granitoids,
which practically avoided chemical weathering.

Results of the Kolmogorov–Smirnov test (KS coefficients) for selections of U–Pb isotope ages of detrital zircons from terrige�
nous sequences of the Bashkir uplift

Sample number М08�16�1 К12�057 К09�027 К09�041 К12�025 К09�025

М08�16�1 0.000 0.000 0.000 0.000 0.017

К12�057 0.000 0.000 0.000 0.000 0.386

К09�027 0.000 0.000 0.389 0.996 0.000

К09�041 0.000 0.000 0.389 0.894 0.000

К12�025 0.000 0.000 0.996 0.894 0.000

К09�025 0.017 0.386 0.000 0.000 0.000

For positions of samples in the stratigraphic section, see Fig. 1; for age spectra and curves of probability density for tested selections of ages
of detrital zircons, see Fig. 2. Calculations were performed using a special module to the standard program MS Excel available for free access
at the site http://sites.google.com/a/laserchron.org/laserchron/home (authors G. Gehrels and J. Guynn, University of Tucson, Arizona, the
United States). The KS test estimates the probability of the consistency of two empirical distributions to a single law. The standard level of KS
test significance is accepted to be 95%. This means that if the KS coefficient value for tested age spectra for zircons exceeds a threshold value
of 0.05, it may by assumed with a high degree of probability (95%) that zircons originate from the same source.
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Moreover, variations in bedding patterns of rocks in
the Asha Group imply different natures and intensities
of tectonic movements in the sedimentary basin and
zone of clastic material transportation. This is also evi�
dent from the distribution of ages obtained for detrital
zircons from sandstones of the Asha Group indicating
the dominant role of a “non�Baltic” source of clastic
material at that time [3].

At the same time, Upper Ordovician sandstones of
the East Bashkir basin demonstrate a highly mature
substantially quartzose composition, associate with
shallow�water carbonate rocks, and take part in the
structure of the sequence characterized by insignifi�
cant sustained thickness. Paleotectonic and paleogeo�
graphic reconstructions available for the Late Ordovi�
cian epoch [15] imply the influx of clastics to the East

Bashkir basin from the East European Platform and its
accumulation in stable tectonic environments. This is
quite consistent with the composition and structure of
the Upper Ordovician terrigenous–carbonate
sequence. Nevertheless, zircons from the Upper
Ordovician sandstones suggest no substantial contri�
bution of “Baltic” sources proper to their assemblage;
on the contrary, age spectra demonstrate a significant
similarity with ages of detrital zircons from sandstones
of the Asha Group.

Such a paradox may be understood assuming that
Upper Ordovician sandstones from the southern part
of the Bashkir uplift were formed by material eroded
from stratigraphic analogs of the Asha Group devel�
oped in the Shkapovo–Shikhan depression of the
Volga–Urals region (Bizhbulyak Complex). At the
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beginning or in the middle of the Ordovician, these
rocks were exhumed and, being subjected to chemical
and mineralogical maturing, became sources of clastic
material for Upper Ordovician deposits of the south�
ern Bashkir uplift. The change in the development
regime and direction of the clastic material transport is
evident from the sedimentation break reflected in dis�
conformity at the base of the Upper Ordovician
sequence (Fig. 4). Single Late Neoproterozoic zircon
grains could be transported together with erosion
products from the Proto�Uralides–Timanides orogen,
which accumulated partly in Lower Ordovician sand�
stones of the western Polar Urals [11].
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